REGULAR GLOBAL ATTRACTORS FOR WAVE EQUATIONS WITH DEGENERATE MEMORY
Abstract
We consider the wave equation with degenerate viscoelastic dissipation recently examined in Cavalcanti, Fatori, and Ma, Attractors for wave equations with degenerate memory, J. Differential Equations (2016). Under certain extra assumptions (namely on the nonlinear term), we show the existence of a compact attracting set which provides further regularity for the global attractor and show that it consists of regular solutions.
Keywords
Full Text:
PDFReferences
Cannarsa P., Rocchetti D. and Vancostenoble J. Generation of analytic semi-groups in \({L}^2\) for a class of second order degenerate elliptic operators. Control Cybernet., 2008. Vol. 37, No. 4. P. 831–878. URL: http://matwbn.icm.edu.pl/ksiazki/cc/cc37/cc3746.pdf
Carvalho A.N., Cholewa J.W. Attractors for strongly damped wave equations with critical nonlinearities. Pacific J. Math., 2002. Vol. 207, No. 2. P. 287–310. DOI: 10.2140/pjm.2002.207.287
Carvalho A.N., Cholewa J.W. Local well posedness for strongly damped wave equations with critical nonlinearities. Bull. Austral. Math. Soc., 2002. Vol. 66, No. 3. P. 443–463. DOI: 10.1017/S0004972700040296
Cavalcanti M.M., Fatori L.H., and Ma T.F. Attractors for wave equations with degenerate memory. J. Differential Equations, 2016. Vol. 260, No. 1. P. 56–83. DOI: 10.1016/j.jde.2015.08.050
Cavaterra C., Gal C.G., and Grasselli M. Cahn–Hilliard equations with memory and dynamic boundary conditions. Asymptot. Anal., 2011. Vol. 71, No. 3. P. 123–162. DOI: 10.3233/ASY-2010-1019
Chueshov I. Dynamics of Quasi-Stable Dissipative Systems. Universitext. Switzerland: Springer, 2015. 390 p. DOI: 10.1007/978-3-319-22903-4
Chueshov I., Lasiecka I. Von Karman Evolution Equations. Well-Posedness and Long-Time Dynamics. Springer Monographs in Mathematics. New York: Springer-Verlag, 2010. 770 p. DOI: 10.1007/978-0-387-87712-9
Conti M., Mola G. 3-D viscous Cahn–Hilliard equation with memory. Math. Models Methods Appl. Sci., 2008. Vol. 32, No. 11. P. 1370–1395. DOI: 10.1002/mma.1091
Conti M., Pata V. Weakly dissipative semilinear equations of viscoelasticity. Commun. Pure Appl. Anal., 2005. Vol. 4, No. 4. P. 705–720. DOI: 10.3934/cpaa.2005.4.705
Conti M., Pata V. and Squassina M. Singular limit of dissipative hyperbolic equations with memory. Discrete Contin. Dyn. Syst., 2005. Special. P. 200–208. URL: https://www.aimsciences.org/article/doi/10.3934/proc.2005.2005.200
Conti M., Pata V. and Squassina M. Singular limit of differential systems with memory. Indiana Univ. Math. J. , 2007. Vol. 55, No. 1. P. 169–215. URL: https://www.jstor.org/stable/24902350
Dell'Oro F., Pata V. Long-term analysis of strongly damped nonlinear wave equations. Nonlinearity, 2011. Vol. 24, No. 12. P. 3413–3435. DOI: 10.1088/0951-7715/24/12/006
Feng B., Pelicer M.L. and Andrade D. Long-time behavior of a semilinear wave equation with memory. Bound. Value Probl., 2016. Art. no. 37. DOI: 10.1186/s13661-016-0551-5
Frigeri S. Attractors for semilinear damped wave equations with an acoustic boundary condition. J. Evol. Equ., 2010. Vol. 10, No. 1. P. 29–58. DOI: 10.1007/s00028-009-0039-1
Gal C.G., Grasselli M. Singular limit of viscous Cahn–Hilliard equations with memory and dynamic boundary conditions. Discrete Contin. Dyn. Syst. Ser. B, 2013. Vol. 18, No. 6. P. 1581–1610. DOI: 10.3934/dcdsb.2013.18.1581
Gal C.G., Shomberg J.L. Hyperbolic relaxation of reaction-diffusion equations with dynamic boundary conditions. Quart. Appl. Math., 2015. Vol. 73, No. 1. P. 93–129. DOI: 10.1090/S0033-569X-2015-01363-5
Gatti S., Grasselli M., Pata V. and Squassina M. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete Contin. Dyn. Syst., 2005. Vol. 12, No. 5. P. 1019–1029. DOI: 10.1090/10.3934/dcds.2005.12.1019
Gatti S., Miranville A., Pata V. and Zelik S. Continuous families of exponential attractors for singularly perturbed equations with memory. Proc. Roy. Soc. Edinburgh Sect. A, 2010. Vol. 140, No. 2. P. 329–366. DOI: 10.1017/S0308210509000365
Gilbarg D. and Trudinger N.S. Elliptic Partial Differential Equations of Second Order. Vol. 224: Grundlehren der Mathematischen Wissenschaften. Heidelberg: Springer-Verlag, 1977. 401 p. DOI: 10.1007/978-3-642-96379-7
Giorgi C., Rivera J.E.M and Pata V. Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl., 2001. Vol. 260, No. 1. P. 83–99. DOI: 10.1006/jmaa.2001.7437
Graber Ph.J., Shomberg J.L. Attractors for strongly damped wave equations with nonlinear hyperbolic dynamic boundary conditions. Nonlinearity, 2016. Vol. 29, No. 4. P. 1171–1212. DOI: 10.1088/0951-7715/29/4/1171
Grasselli M., Pata V. Asymptotic behavior of a parabolic-hyperbolic system. Commun. Pure Appl. Anal., 2004. Vol. 3, No. 4. P. 849–881. DOI: 10.3934/cpaa.2004.3.849
Joly R. and Laurent C. Stabilization for the semilinear wave equation with geometric control condition. Anal. PDE, 2013. Vol. 6, No. 5. P. 1089–1119. URL: https://projecteuclid.org/euclid.apde/1513731398
Li F., Zhao C. Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping. Nonlinear Anal., 2011. Vol. 74, No. 11. P. 3468–3477. DOI: 10.1016/j.na.2011.02.033
Pata V., Squassina M. On the strongly damped wave equation. Comm. Math. Phys., 2005. Vol. 253, No. 3. P. 511–533. DOI: 10.1007/s00220-004-1233-1
Pata V., Zelik S. Smooth attractors for strongly damped wave equations. Nonlinearity, 2006. Vol. 19, No. 7. P. 1495–1506. DOI: 10.1088/0951-7715/19/7/001
Pata V., Zucchi A. Attractors for a damped hyperbolic equation with linear memory. Adv. Math. Sci. Appl., 2001. Vol. 11, No. 2. P. 505–529.
Di Plinio F., Pata V. Robust exponential attractors for the strongly damped wave equation with memory. II. Russ. J. Math. Phys., 2009. Vol. 16, No. 1. P. 61–73. DOI: 10.1134/S1061920809010038
Di Plinio F., Pata V. and Zelik S. On the strongly damped wave equation with memory. Indiana Univ. Math. J., 2008. Vol. 57, No. 2. P. 757–780. https://www.jstor.org/stable/24902971
Santos M. On the wave equations with memory in noncylindrical domains. Electron. J. Differential Equations, 2007. Vol. 2007, No. 128. P. 1–18. https://ejde.math.txstate.edu/Volumes/2007/128/santos.pdf
Tahamtani F., Peyravi A. General decay of solutions for a nonlinear viscoelastic wave equation with nonlocal boundary damping. Miskolc Math. Notes, 2014. Vol. 15, No. 2. P. 753–760. DOI: 10.18514/MMN.2014.799
Article Metrics
Refbacks
- There are currently no refbacks.