ON A DYNAMIC GAME PROBLEM WITH AN INDECOMPOSABLE SET OF DISTURBANCES
Abstract
For an abstract dynamic system, a game problem of retention of the motions in a given set of the motion histories is considered. The case of an indecomposable set of disturbances is studied. The set of successful solvability and a construction of a resolving quasistrategy based on the method of programmed iterations is proposed.
Keywords
Full Text:
PDFReferences
Chentsov A.G. On a game problem of converging at a given instant of time. Math. USSR-Sb., 1976. Vol. 28, No. 3. P. 353–376. DOI: 10.1007/s40840-014-0068-y
Chentsov A.G. On a game problem of guidance with information memory. Dokl. Akad. Nauk SSSR, 1976. Vol. 227, No. 2. P. 306–309. (in Russian) http://mi.mathnet.ru/eng/dan40223
Engelking R. General Topology. Sigma Ser. Pure Math., vol. 6. Warszawa: Panstwowe Wydawnictwo Naukowe, 1985. 540 p.
Gomoyunov M.I., Serkov D.: Control with a guide in the guarantee optimization problem under functional constraints on the disturbance. Proc. Steklov Inst. Math., 2017. Vol. 299, Suppl. 1. P. S49–S60. DOI: 10.1134/S0081543817090073
Krasovskii N.N., Subbotin A.I. Game-Theoretical Control Problems. New York: Springer-Verlag, 1988. 517 p.
Ledyaev Y.S. Program-predictive feedback control for systems with evolving dynamics. IFAC-PapersOnLine, 2018. Vol. 51, No. 32. P. 723–726. DOI: 10.1016/j.ifacol.2018.11.461
Rockafellar R.T. Integrals which are convex functionals. Pacific J. Math., 1968. Vol. 24, No. 3. P. 525–539. DOI: 10.2140/pjm.1968.24.525
Serkov D.A. Transfinite sequences in the programmed iteration method. Proc. Steklov Inst. Math., 2018. Vol. 300, Suppl. 1. P. S153–S164. DOI: 10.1134/S0081543818020153
Serkov D.A., Chentsov A.G. The elements of the operator convexity in the construction of the programmed iteration method. Bull. South Ural State Univ. Ser. Math. Modell. Program. Comp. Software, 2016. Vol. 9, No. 3. P. 82–93. DOI: 10.14529/mmp160307
Article Metrics
Refbacks
- There are currently no refbacks.