MOMENT PROBLEMS IN WEIGHTED \(L^2\) SPACES ON THE REAL LINE
Abstract
For a class of sets with multiple terms
$$ \{\lambda_n,\mu_n\}_{n=1}^{\infty}:=\{\underbrace{\lambda_1,\lambda_1,\dots,\lambda_1}_{\mu_1 - times},
\underbrace{\lambda_2,\lambda_2,\dots,\lambda_2}_{\mu_2 - times},\dots,
\underbrace{\lambda_k,\lambda_k,\dots,\lambda_k}_{\mu_k - times},\dots\},$$having density \(d\) counting multiplicities, and a doubly-indexed sequence of non-zero complex numbers\linebr eak \(\{d_{n,k}:\, n\in\mathbb{N},\, k=0,1,\dots ,\mu_n-1\} \) satisfying certain growth conditions, we consider a moment problem of the form $$\int_{-\infty}^{\infty}e^{-2w(t)}t^k e^{\lambda_n t}f(t)\, dt=d_{n,k},\quad \forall\,\, n\in\mathbb{N}\quad \text{and}\quad k=0,1,2,\dots, \mu_n-1,$$ in weighted \(L^2 (-\infty, \infty)\) spaces. We obtain a solution \(f\) which extends analytically as an entire function, admitting a Taylor–Dirichlet series representation $$ f(z)=\sum_{n=1}^{\infty}\Big(\sum_{k=0}^{\mu_n-1}c_{n,k} z^k\Big) e^{\lambda_n z},\quad c_{n,k}\in \mathbb{C},\quad\forall\,\, z\in \mathbb{C}. $$ The proof depends on our previous work where we characterized the closed span of the exponential system \(\{t^k e^{\lambda_n t}:\, n\in\mathbb{N},\,\, k=0,1,2,\dots,\mu_n-1\}\) in weighted \(L^2 (-\infty, \infty)\) spaces, and also derived a sharp upper bound for the norm of elements of a biorthogonal sequence to the exponential system. The proof also utilizes notions from Non-Harmonic Fourier series such as Bessel and Riesz–Fischer sequences.
Keywords
Full Text:
PDFReferences
Anderson J.M., Binmore K.G. Closure theorems with applications to entire functions with gaps. Trans. Amer. Math. Soc., 1971. Vol. 161. P. 381–400. DOI: 10.2307/1995948
Borichev A. On the closure of polynomials in weighted spaces of functions on the real line. Indiana Univ. Math. J., 2001. Vol. 50. No. 2. P. 829–846. DOI: 10.1512/iumj.2001.50.2044
Casazza P., Christensen O., Li S., Lindner A. Riesz–Fischer sequences and lower frame bounds. Z. Anal. Anwend., 2002. Vol. 21. No. 2. P. 305–314. DOI: 10.4171/ZAA/1079
Christensen O. An Introduction to Frames and Riesz Bases. Appl. Numer. Harmon. Anal. Basel: Birkhäuser, Springer, 2003. 440 p. DOI: 10.1007/978-0-8176-8224-8
Malliavin P. Sur quelques procédés d’extrapolation. Acta Math., 1955. Vol. 93. P. 179–255. DOI: 10.1007/BF02392523
Young R.M. An Introduction to Nonharmonic Fourier Series. Revised first edition. San Diego, CA: Academic Press, Inc., 2001. 234 p.
Zikkos E. Completeness of an exponential system in weighted Banach spaces and closure of its linear span. J. Approx. Theory, 2007. Vol. 146. No. 1. P. 115–148. DOI: 10.1016/j.jat.2006.12.002
Zikkos E. The closed span of some exponential system in weighted Banach spaces on the real line and a moment problem. Analysis Math., 2018. Vol. 44. No. 4. P. 605–630. DOI: 10.1007/s10476-018-0311-0
Article Metrics
Refbacks
- There are currently no refbacks.