THE LIMITS OF APPLICABILITY OF THE LINEARIZATION METHOD IN CALCULATING SMALL–TIME REACHABLE SETS
Abstract
Keywords
Full Text:
PDFReferences
Baier R., Gerdts M., Xausa I. Approximation of reachable sets using optimal control algorithms. Numer. Algebra Control Optim., 2013. Vol. 3, No. 3. P. 519–548. DOI: 10.3934/naco.2013.3.519
Dmitruk A.V., Milyutin A.A., Osmolovskii N.P. Lyusternik’s theorem and the theory of extrema. Russian Math. Surveys, 1980. Vol. 35, No. 6. P. 11–51. DOI: 10.1070/RM1980v035n06ABEH001973
Filippova T.F. Ellipsoidal estimates of reachable sets for control systems with nonlinear terms. IFAC-PapersOnLine, 2017. Vol. 50, No. 1. P. 15355–15360. DOI: 10.1016/j.ifacol.2017.08.2460
Goncharova E., Ovseevich A. Small-time reachable sets of linear systems with integral control constraints: birth of the shape of a reachable set. J. Optim. Theory Appl., 2016. Vol. 168. P. 615–624. DOI: 10.1007/s10957-015-0754-4
Guseinov K.G., Ozer O., Akyar E., Ushakov V.N. The approximation of reachable sets of control systems with integral constraint on controls. Nonlinear Differ. Equ. Appl., 2007. Vol. 14. P. 57–73. DOI: 10.1007/s00030-006-4036-6
Guseinov Kh.G., Nazlipinar A.S. Attainable sets of the control system with limited resources. Trudy Inst. Mat. i Mekh. UrO RAN, 2010. Vol. 16, No. 5. P. 261–268.
Gusev M. On reachability analysis of nonlinear systems with joint integral constraints. In: Lecture Notes in Comput. Sci., vol. 10665: Large-Scale Scientific Computing. LSSC 2017. Lirkov I., Margenov S. (eds.) Cham: Springer, 2018. P. 219–227. DOI: 10.1007/978-3-319-73441-5_23
Gusev M.I., Zykov I.V. On extremal properties of the boundary points of reachable sets for control systems with integral constraints. Proc. Steklov Inst. Math., 2018. Vol. 300. Suppl. 1. P. 114–125. DOI: 10.1134/S0081543818020116
Gusev M.I. Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter. In: Lecture Notes in Comput. Sci., vol. 11548: Int. Conf. Mathematical Optimization Theory and Operations Research. MOTOR 2019. Khachay M., Kochetov Y., Pardalos P. (eds.) Cham: Springer, 2019. P. 461–473. DOI: 10.1007/978-3-030-22629-9_32
Gusev M.I., Osipov I.O. Asimptoticheskoye povedeniye mnozhestv dostizhimosti na malykh vremennykh promezhutkakh [Asymptotic behavior of reachable sets on small time intervals]. Trudy Inst. Mat. Mekh. UrO RAN, 2019. Vol. 25, No. 3. P. 86–99. DOI: 10.21538/0134-4889-2019-25-3-86-99 (in Russian)
Kostousova E.K. On polyhedral estimates for reachable sets of discrete-time systems with bilinear uncertainty. Autom. Remote Control, 2011. Vol. 72. P. 1841–1851. DOI: 10.1134/S0005117911090062
Krener A.J., Schättler H. The structure of small-time reachable sets in low dimensions. SIAM J. Control Optim., 1989. Vol. 27. No. 1. P. 120–147. DOI: 10.1137/0327008
Kurzhanski A.B., Varaiya P. Dynamic optimization for reachability problems. J. Optim. Theory Appl., 2001. Vol. 108(2). P. 227–251. DOI: 10.1023/A:1026497115405
Kurzhanski A.B., Varaiya P. Dynamics and Control of Trajectory Tubes. Theory and Computation. Systems Control Found. Appl., vol. 85. Basel: Birkh¨auser, 2014. 445 p. DOI: 10.1007/978-3-319-10277-1
Patsko V.S., Pyatko S.G., Fedotov A.A. Three-dimensional reachability set for a nonlinear control system. J. Comput. Syst. Sci. Int., 2003. Vol. 42. No. 3. P. 320–328.
Polyak B. T. Convexity of the reachable set of nonlinear systems under \(L_2\) bounded controls. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 2004. Vol. 11. P. 255–267.
Polyak B.T. Local programming. Comput. Math. Math. Phys., 2001. Vol. 41, No. 9. P. 1259–1266.
Lee E.B. and Marcus L. Foundations of Optimal Control Theory. New York: J. Willey and Sons Inc., 1967. 576 p.
Schättler H. Small-time reachable sets and time-optimal feedback control. In: Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control. Vol. 78: The IMA Volumes in Mathematics and its Applications. Mordukhovich B.S., Sussmann H.J. (eds.) New York: Springer, 1996. P. 203–225. DOI: 10.1007/978-1-4613-8489-2_9
Tochilin P.A. On the construction of nonconvex approximations to reach sets of piecewise linear systems. Differ. Equ., 2015. Vol. 51, No. 11. P. 1499–1511. DOI: 10.1134/S0012266115110117
Vdovin S.A., Taras’yev A.M., Ushakov V.N. Construction of the attainability set of a Brockett integrator. J. Appl. Math. Mech., 2004. Vol. 68, No. 5. P. 631–646. DOI: 10.1016/j.jappmathmech.2004.09.001
Zykov I.V. On external estimates of reachable sets of control systems with integral constraints. Izv. IMI UdGU, 2019. Vol. 53. P. 61–72. DOI: 10.20537/2226-3594-2019-53-06 (in Russian)
Walter W. Differential and Integral Inequalities. Berlin, Heidelberg: Springer-Verlag, 1970. 354 p. DOI: 10.1007/978-3-642-86405-6
Article Metrics
Refbacks
- There are currently no refbacks.