HAHN'S PROBLEM WITH RESPECT TO SOME PERTURBATIONS OF THE RAISING OPERATOR \(X-c\)
Abstract
In this paper, we study the Hahn's problem with respect to some raising operators perturbed of the operator \(X-c\), where \(c\) is an arbitrary complex number. More precisely, the two following characterizations hold: up to a normalization, the \(q\)-Hermite (resp. Charlier) polynomial is the only \(H_{\alpha,q}\)-classical (resp. \(\mathcal{S}_{\lambda}\)-classical) orthogonal polynomial, where \(H_{\alpha, q}:=X+\alpha H_q\) and \(\mathcal{S}_{\lambda}:=(X+1)-\lambda\tau_{-1}.\)
Keywords
Full Text:
PDFReferences
Abdelkarim F., Maroni P. The \(D_\omega\)-classical orthogonal polynomials. Result. Math., 1997. Vol. 32, No. 1–2. P. 1–28. DOI: 10.1007/BF03322520
Aloui B. Characterization of Laguerre polynomials as orthogonal polynomials connected by the Laguerre degree raising shift operator. Ramanujan J., 2018. Vol. 45, No. 2. P. 475–481. DOI: 10.1007/s11139-017-9901-x
Aloui B. Chebyshev polynomials of the second kind via raising operator preserving the orthogonality. Period. Math. Hung., 2018. Vol. 76, No. 1. P. 126–132. DOI: 10.1007/s10998-017-0219-7
Aloui B., Khériji L. Connection formulas and representations of Laguerre polynomials in terms of the action of linear differential operators. Probl. Anal. Issues Anal., 2019. Vol. 8(26), No. 3. P. 24–37. DOI: 10.15393/j3.art.2019.6290
Area I., Godoy A., Ronveaux A., Zarzo A. Classical symmetric orthogonal polynomials of a discrete variable. Integral Transforms Spec. Funct., 2004. Vol. 15, No. 1. P. 1–12. DOI: 10.1080/10652460310001600672
Ben Cheikh Y., Gaied M. Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 2007. Vol. 187, No. 1. P. 105–114. DOI: 10.1016/j.amc.2006.08.108
Ben Salah I., Ghressi A., Khériji L. A characterization of symmetric \(T_{\mu}\)- -classical monic orthogonal polynomials by a structure relation. Integral Transforms Spec. Funct., 2014. Vol. 25, No. 6. P. 423–432. DOI: 10.1080/10652469.2013.870339
Bouanani A., Khériji L., Tounsi M.I. Characterization of \(q\)-Dunkl Appell symmetric orthogonal \(q\)-polynomials. Expo. Math., 2010. Vol. 28, No. 4. P. 325–336. DOI: 10.1016/j.exmath.2010.03.003
Chaggara H. Operational rules and a generalized Hermite polynomials. J. Math. Anal. Appl., 2007. Vol. 332, No. 1. P. 11–21. DOI: 10.1016/j.jmaa.2006.09.068
Chihara T.S. An Introduction to Orthogonal Polynomials. New York: Gordon and Breach, 1978. 249 p.
Hahn W. Über die Jacobischen polynome und zwei verwandte polynomklassen. Math. Z., 1935. Vol. 39. P. 634–638.
Khériji L., Maroni P. The \(H_q\) -classical orthogonal polynomials. Acta. Appl. Math., 2002. Vol. 71, No. 1. P. 49–115. DOI: 10.1023/A:1014597619994
Koornwinder T.H. Lowering and raising operators for some special orthogonal polynomials. In: Jack, Hall-Littlewood and Macdonald Polynomials, V.B. Kuznetsov, S. Sahi (eds.). Contemp. Math., vol. 417, 2006. P. 227–239. DOI: 10.1090/conm/417
Maroni P., Mejri M. The \(I_{(q,\omega)}\) -classical orthogonal polynomials. Appl. Numer. Math., 2002. Vol. 43, No. 4. P. 423–458. DOI: 10.1016/S0168-9274(01)00180-5
Maroni P. Fonctions Eulériennes, Polynômes Orthogonaux Classiques. Techniques de l’Ingénieur, Traité Généralités (Sciences Fondamentales), 1994. Vol. 154 A. Paris. P. 1–30.
Maroni P. Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In: Orthogonal Polynomials and their Applications, C. Brezinski et al. (eds.). IMACS Ann. Comput. Appl. Math., vol. 9. Basel: Baltzer,1991. P. 95–130.
Maroni P. Variations autour des polynmes orthogonaux classiques. C. R. Acad. Sci. Paris Sér. I Math., 1991. Vol. 313. P. 209–212.
Sonine N.J. On the approximate computation of definite integrals and on the entire functions occurring there. Warsch. Univ. Izv., 1887. Vol. 18. P. 1–76.
Srivastava H.M., Ben Cheikh Y. Orthogonality of some polynomial sets via quasi-monomiality. Appl. Math. Comput., 2003. Vol. 141, No. 2–3. P. 415–425. DOI: 10.1016/S0096-3003(02)00961-X
Article Metrics
Refbacks
- There are currently no refbacks.