MODIFIED PROXIMAL POINT ALGORITHM FOR MINIMIZATION AND FIXED POINT PROBLEM IN CAT(0) SPACES
Abstract
In this paper, we study modified-type proximal point algorithm for approximating a common solution of a lower semi-continuous mapping and fixed point of total asymptotically nonexpansive mapping in complete CAT(0) spaces. Under suitable conditions, some strong convergence theorems of the proposed algorithms to such a common solution are proved.
Keywords
Proximal point algorithm, Total asymptotically nonexpansive mapping, Fixed point, $\triangle$ convergence, Strong convergence, CAT(0) space
Full Text:
PDFReferences
- Alber Ya. I., Chidume C. E., Zegeye H. Approximating fixed points of total asymptotically nonexpansive mappings. Fixed Point Theory Appl., 2006. Art. no. 10673. P. 1–20. DOI: 10.1155/FPTA/2006/10673
- Ahmad I., Ahmad M. An implicit viscosity technique of nonexpansive mapping in CAT(0) spaces. Open J. Math. Anal., 2017. Vol. 1. P. 1–12. DOI: 10.30538/psrp-oma2017.0001
- Agarwal R. P., O’Regan D., Sahu D. R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal., 2007. Vol. 8, No. 1. P. 61–79.
- Ambrosio L., Gigli N., Savare G. Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed. Lectures in Mathematics ETH Zürich. Basel: Birkhäuser, 2008. 334 p. DOI: 10.1007/978-3-7643-8722-8
- Ariza-Ruiz D., Leu¸stean L., López-Acedo G. Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Amer. Math. Soc., 2014. Vol. 366. No. 8. P. 4299–4322. DOI: 10.1090/S0002-9947-2014-05968-0
- Bačák M. The proximal point algorithm in metric spaces. Israel J. Math., 2013. Vol. 194. P. 689–701. DOI: 10.1007/s11856-012-0091-3
- Berg I. D., Nikolaev I. G. Quasilinearization and curvature of Aleksandrov spaces. Geom. Dedicata, 2008. Vol. 133. P. 195–218. DOI: 10.1007/s10711-008-9243-3
- Bonyah E., Ahmad M., Ahmad I. On the viscosity rule for common fixed points of two nonexpansive mappings in CAT(0) spaces. Open J. Math. Sci., 2018. Vol. 2. No. 1. P. 39–55. DOI: 10.30538/oms2018.0016
- Bridson M. R., Häfliger A. Metric Spaces of Nonpositive Curvature. Grundlehren Math. Wiss., vol. 319. Berlin, Heidelberg: Springer-Verlag, 1999. 643 p. DOI: 10.1007/978-3-662-12494-9
- Burago D., Burago Yu., Ivanov S. A Course in Metric Geometry. Grad. Stud. Math., vol. 33. Providence, RI: A.M.S., 2001. 415 p.
- Chang S.-S., Wang L., Joseph Lee H. W., Chan C. K., Yang L. Demiclosed principle and △-convergence theorems for total asymptotically nonexpansive mappings in CAT(0) spaces. Appl. Math. Comput., 2012. Vol. 219, No. 5. P. 2611–2617. DOI: 10.1016/j.amc.2012.08.095
- Chang S.-S., Yao J.-C., Wang L., Qin L. J. Some convergence theorems involving proximal point and common fixed points for asymptotically nonexpansive mappings in CAT(0) spaces. Fixed Point Theory Appl., 2016. Art. no. 68. P. 1–11. DOI: 10.1186/s13663-016-0559-7
- Cholamjiak P., Abdou A. A., Cho Y. J. Proximal point algorithms involving fixed points of nonexpansive mappings in CAT(0) spaces. Fixed Point Theory Appl., 2015. Art. no. 227. P. 1–13. DOI: 10.1186/s13663-015-0465-4
- Dehghan H., Rooin J. A Characterization of Metric Projection in CAT(0) spaces. 2012. 3 p. arXiv: 1311.4174 [math.FA]
- Dhompongsa S., Kirk W. A., Sims B. Fixed points of uniformly lipschitzian mappings. Nonlinear Anal., 2006. Vol. 65, No. 4. P. 762–772. DOI: 10.1016/j.na.2005.09.044
- Dhompongsa S., Panyanak B. On △-convergence theorems in CAT(0) spaces. Comput. Math. Appl., 2008. Vol. 56, No. 10. P. 2572–2579. DOI: 10.1016/j.camwa.2008.05.036
- Jost J. Convex functionals and generalized harmonic maps into spaces of non positive curvature. Comment. Math. Helv., 1995. Vol. 70. P. 659–673. DOI: 10.1007/BF02566027
- Güler O. On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim., 1991. Vol. 29, No. 2. P. 403–419. DOI: 10.1137/0329022
- Kakavandi B. A. Weak topologies in complete CAT(0) metric spaces. Proc. Amer. Math. Soc., 2012. Vol. 141, No. 3. P. 1029–1039. URL: https://www.jstor.org/stable/23558440
- Kamimura S., Takahashi W. Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory, 2000. Vol. 106, No. 2. P. 226–240. DOI: 10.1006/jath.2000.3493
- Kang S. M., Haq A. U., Nazeer W., Ahmad I., Ahmad M. Explicit viscosity rule of nonexpansive mappings in CAT(0) spaces. J. Comput. Anal. Appl., 2019. Vol. 27, No. 6. P. 1034–1043.
- Kirk W. A. Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis, Malaga/Seville, 2002/2003, Álvares D.G., Acelo G.L., Caro R.V. (eds.), vol. 64. P. 195–225.
- Kirk W. A. Geodesic geometry and fixed point theory, II. In: Int. Conf. on Fixed Point Theory and Applications, Yokohama Publ., Yokohama, Japan, 2004. P. 113–142.
- Kirk W. A., Panyanak B. A concept of convergence in geodesic spaces. Nonlinear Anal., 2008. Vol. 68, No. 12. P. 3689–3696. DOI: 10.1016/j.na.2007.04.011
- Maingé P. E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal., 2008. Vol. 16, No. 7–8. P. 899–912. DOI: 10.1007/s11228-008-0102-z
- Martinet B. Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér., 1970. Vol. 4, No. R3. P. 154–158. (in France)
- Mayer U. F. Gradient flows on nonpositively curved metric spaces and harmonic maps. Commun. Anal. Geom. 1998. Vol. 6, No. 2. P. 199–253.
- Rockafellar R. T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 1976. Vol. 14, No. 5. P. 877–898. DOI: /10.1137/0314056
- Suparatulatorn R., Cholamjiak P., Suantai S. On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces. Optim. Methods Softw., 2017. Vol. 32, No. 1. P. 182–192. DOI: 10.1080/10556788.2016.1219908
- Xu H. K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. (2), 2002. Vol. 66, No. 1. P. 240–256. DOI: 10.1112/S0024610702003332
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.