ON ZYGMUND–TYPE INEQUALITIES CONCERNING POLAR DERIVATIVE OF POLYNOMIALS
Abstract
Let \(P(z)\) be a polynomial of degree \(n\), then concerning the estimate for maximum of \(|P'(z)|\) on the unit circle, it was proved by S. Bernstein that \(\| P'\|_{\infty}\leq n\| P\|_{\infty}\). Later, Zygmund obtained an \(L_p\)-norm extension of this inequality. The polar derivative \(D_{\alpha}[P](z)\) of \(P(z)\), with respect to a point \(\alpha \in \mathbb{C}\), generalizes the ordinary derivative in the sense that \(\lim_{\alpha\to\infty} D_{\alpha}[P](z)/{\alpha} = P'(z).\) Recently, for polynomials of the form \(P(z) = a_0 + \sum_{j=\mu}^n a_jz^j,\) \(1\leq\mu\leq n\) and having no zero in \(|z| < k\) where \(k > 1\), the following Zygmund-type inequality for polar derivative of \(P(z)\) was obtained:
$$\|D_{\alpha}[P]\|_p\leq n \Big(\dfrac{|\alpha|+k^{\mu}}{\|k^{\mu}+z\|_p}\Big)\|P\|_p, \quad \text{where}\quad |\alpha|\geq1,\quad p>0.$$
In this paper, we obtained a refinement of this inequality by involving minimum modulus of \(|P(z)|\) on \(|z| = k\), which also includes improvements of some inequalities, for the derivative of a polynomial with restricted zeros as well.
Keywords
Full Text:
PDFReferences
- Arestov V.V. On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR-Izv., 1982. Vol. 18, No. 1. P. 1–17. DOI: 10.1070/IM1982v018n01ABEH001375
- Arestov V.V. Integral inequalities for algebraic polynomials with a restriction on their zeros. Anal. Math., 1991. Vol. 17, P. 11–20. DOI: 10.1007/bf02055084
- Aziz A., Rather N.A. \(L^p\) inequalities for polynomials. Glas. Math., 1997. Vol. 32, No. 1. P. 39–43.
- Aziz A., Rather N.A. Some Zygmund type \(L^q\) inequalities for polynomials. J. Math. Anal. Appl., 2004. Vol. 289, No. 1. P. 14–29. DOI: 10.1016/S0022-247X(03)00530-4
- Aziz A., Rather N.A. On an inequality concerning the polar derivative of a polynomial. Proc. Math. Sci., 2007. Vol. 117. P. 349–357. DOI: 10.1007/s12044-007-0030-0
- Aziz A, Rather N.A., Aliya Q. \(L_q\) norm inequalities for the polar derivative of a polynomial. Math. Inequal. Appl., 2008. Vol. 11. P. 283–296. DOI: 10.7153/mia-11-20
- De Bruijn NG. Inequalities concerning polynomials in the complex domain. Indag. Math. (N.S.), 1947. Vol. 9, No. 5. P. 1265–1272.
- Gardner R., Weems A. A Bernstein type L p inequality for a certain class of polynomials. J. Math. Anal. Appl., 1998. Vol. 219. P. 472–478.
- Govil N.K. On the growth of polynomials. J. Inequal. Appl., 2002. Vol. 7, No. 5. P. 623–631.
- Govil N.K., Rahman Q.I. Functions of exponential type not vanishing in a half-plane and related polynomials. Trans. Amer. Math. Soc., 1969. Vol. 137, P. 501–517. DOI: 10.1090/S0002-9947-1969-0236385-6
- Mahler K. An application of Jensen’s formula to polynomials. Mathematika, 1960. Vol. 7, No. 2. P. 98–100. DOI: 10.1112/S0025579300001637
- Marden M. Geometry of Polynomials. Math. Surveys, Amer. Math. Soc., 1989. 243 p.
- Milovanovic G.V., Mitrinovic D.S., Rassias Th. Topics in Polynomials: Extremal properties, Inequalituies, Zeros. Singapore: World Scientific, 1994. 836 p. DOI: 10.1142/1284
- Pólya G.,Szegö G. Aufgaben und lehrsätze aus der Analysis. Springer-Verlag, Berlin, 1925. 353 p. (in German)
- Qazi M.A. On the maximum modulus of polynomials. Proc. Amer. Math. Soc., 1992. Vol. 115. P. 237–243. DOI: 10.1090/S0002-9939-1992-1113648-1
- Rahman Q.I., Schmeisser G. \(L^p\) inequalities for polynomials. J. Approx. Theory, 1998. Vol. 53, No. 1. P. 26–32. DOI: 10.1016/0021-9045(88)90073-1
- Rather N.A., Some integral inequalities for the polar derivative of a polynomial. Math. Balkanica (N.S.), 2008. Vol. 22, No. 3–4. P. 207–216.
- Rather N.A. L p inequalities for the polar derivative of a polynomial. J. Inequal. Pure Appl. Math., 2008. Vol. 9, No. 4. Art. no. 103, P. 1–10.
- Rather N.A., Iqbal A., Hyun G.H. Integral inequalities for the polar derivative of a polynomial. Nonlinear Funct. Anal. Appl., 2018. Vol. 23, No. 2. P. 381–393.
- Schaeffer A.C. Inequalities of A. Markoff and S.Bernstein for polynomials and related functions. Bull. Amer. Math. Soc., 1941. Vol. 47. P. 565–579. DOI: 10.1090/S0002-9904-1941-07510-5
- Zygmund A. A remark on conjugate series. Proc. Lond. Math. Soc. (3), 1932. Vol. s2-34, No. 1. P. 392–400. DOI: 10.1112/plms/s2-34.1.392
Article Metrics
Refbacks
- There are currently no refbacks.