ON ZYGMUND–TYPE INEQUALITIES CONCERNING POLAR DERIVATIVE OF POLYNOMIALS

Nisar Ahmad Rather     (University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India)
Suhail Gulzar     (Government College of Engineering and Technology, Safapora, Ganderbal, Jammu and Kashmir 193504, India)
Aijaz Bhat     (University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India)

Abstract


Let \(P(z)\) be a polynomial of degree \(n\), then concerning the estimate for maximum of \(|P'(z)|\) on the unit circle, it was proved by S. Bernstein that \(\| P'\|_{\infty}\leq n\| P\|_{\infty}\). Later, Zygmund obtained an \(L_p\)-norm extension of this inequality. The polar derivative \(D_{\alpha}[P](z)\) of \(P(z)\), with respect to a point \(\alpha \in \mathbb{C}\), generalizes the ordinary derivative in the sense that \(\lim_{\alpha\to\infty} D_{\alpha}[P](z)/{\alpha} = P'(z).\) Recently, for polynomials of the form \(P(z) = a_0 + \sum_{j=\mu}^n a_jz^j,\) \(1\leq\mu\leq n\) and having no zero in \(|z| < k\) where \(k > 1\), the following Zygmund-type inequality for polar derivative of \(P(z)\) was obtained: 
$$\|D_{\alpha}[P]\|_p\leq n \Big(\dfrac{|\alpha|+k^{\mu}}{\|k^{\mu}+z\|_p}\Big)\|P\|_p, \quad \text{where}\quad |\alpha|\geq1,\quad p>0.$$
In this paper, we obtained a refinement of this inequality by involving minimum modulus of \(|P(z)|\) on \(|z| = k\), which also includes improvements of some inequalities, for the derivative of a polynomial with restricted zeros as well.


Keywords


\(L^{p}\)-inequalities, Polar derivative, Polynomials

Full Text:

PDF

References


  1. Arestov V.V. On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR-Izv., 1982. Vol. 18, No. 1. P. 1–17. DOI: 10.1070/IM1982v018n01ABEH001375
  2. Arestov V.V. Integral inequalities for algebraic polynomials with a restriction on their zeros. Anal. Math., 1991. Vol. 17, P. 11–20. DOI: 10.1007/bf02055084
  3. Aziz A., Rather N.A. \(L^p\) inequalities for polynomials. Glas. Math., 1997. Vol. 32, No. 1. P. 39–43.
  4. Aziz A., Rather N.A. Some Zygmund type \(L^q\) inequalities for polynomials. J. Math. Anal. Appl., 2004. Vol. 289, No. 1. P. 14–29. DOI: 10.1016/S0022-247X(03)00530-4
  5. Aziz A., Rather N.A. On an inequality concerning the polar derivative of a polynomial. Proc. Math. Sci., 2007. Vol. 117. P. 349–357. DOI: 10.1007/s12044-007-0030-0
  6. Aziz A, Rather N.A., Aliya Q. \(L_q\) norm inequalities for the polar derivative of a polynomial. Math. Inequal. Appl., 2008. Vol. 11. P. 283–296. DOI: 10.7153/mia-11-20
  7. De Bruijn NG. Inequalities concerning polynomials in the complex domain. Indag. Math. (N.S.), 1947. Vol. 9, No. 5. P. 1265–1272.
  8. Gardner R., Weems A. A Bernstein type L p inequality for a certain class of polynomials. J. Math. Anal. Appl., 1998. Vol. 219. P. 472–478.
  9. Govil N.K. On the growth of polynomials. J. Inequal. Appl., 2002. Vol. 7, No. 5. P. 623–631.
  10. Govil N.K., Rahman Q.I. Functions of exponential type not vanishing in a half-plane and related polynomials. Trans. Amer. Math. Soc., 1969. Vol. 137, P. 501–517. DOI: 10.1090/S0002-9947-1969-0236385-6
  11. Mahler K. An application of Jensen’s formula to polynomials. Mathematika, 1960. Vol. 7, No. 2. P. 98–100. DOI: 10.1112/S0025579300001637
  12. Marden M. Geometry of Polynomials. Math. Surveys, Amer. Math. Soc., 1989. 243 p.
  13. Milovanovic G.V., Mitrinovic D.S., Rassias Th. Topics in Polynomials: Extremal properties, Inequalituies, Zeros. Singapore: World Scientific, 1994. 836 p. DOI: 10.1142/1284
  14. Pólya G.,Szegö G. Aufgaben und lehrsätze aus der Analysis. Springer-Verlag, Berlin, 1925. 353 p. (in German)
  15. Qazi M.A. On the maximum modulus of polynomials. Proc. Amer. Math. Soc., 1992. Vol. 115. P. 237–243. DOI: 10.1090/S0002-9939-1992-1113648-1
  16. Rahman Q.I., Schmeisser G. \(L^p\) inequalities for polynomials. J. Approx. Theory, 1998. Vol. 53, No. 1. P. 26–32. DOI: 10.1016/0021-9045(88)90073-1
  17. Rather N.A., Some integral inequalities for the polar derivative of a polynomial. Math. Balkanica (N.S.), 2008. Vol. 22, No. 3–4. P. 207–216.
  18. Rather N.A. L p inequalities for the polar derivative of a polynomial. J. Inequal. Pure Appl. Math., 2008. Vol. 9, No. 4. Art. no. 103, P. 1–10.
  19. Rather N.A., Iqbal A., Hyun G.H. Integral inequalities for the polar derivative of a polynomial. Nonlinear Funct. Anal. Appl., 2018. Vol. 23, No. 2. P. 381–393.
  20. Schaeffer A.C. Inequalities of A. Markoff and S.Bernstein for polynomials and related functions. Bull. Amer. Math. Soc., 1941. Vol. 47. P. 565–579. DOI: 10.1090/S0002-9904-1941-07510-5
  21. Zygmund A. A remark on conjugate series. Proc. Lond. Math. Soc. (3), 1932. Vol. s2-34, No. 1. P. 392–400. DOI: 10.1112/plms/s2-34.1.392




DOI: http://dx.doi.org/10.15826/umj.2021.1.007

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.