ON CHROMATIC UNIQUENESS OF SOME COMPLETE TRIPARTITE GRAPHS
Abstract
Let \(P(G, x)\) be a chromatic polynomial of a graph \(G\). Two graphs \(G\) and \(H\) are called chromatically equivalent iff \(P(G, x) = H(G, x)\). A graph \(G\) is called chromatically unique if \(G\simeq H\) for every \(H\) chromatically equivalent to \(G\). In this paper, the chromatic uniqueness of complete tripartite graphs \(K(n_1, n_2, n_3)\) is proved for \(n_1 \geqslant n_2 \geqslant n_3 \geqslant 2\) and \(n_1 - n_3 \leqslant 5\).
Keywords
Chromatic uniqueness, Chromatic equivalence, Complete multipartite graphs, Chromatic polynomial
Full Text:
PDFReferences
- Asanov M.O., Baransky V.A., Rasin V.V. Diskretnaya matematika: grafy, matroidy, algoritmy [Discrete Mathematics: Graphs, Matroids, Algorithms]. Saint-Petersburg: “Lan”, 2010. 364 p. (in Russian)
- Baransky V.A., Koroleva T.A. Chromatic uniqueness of certain complete tripartite graphs. Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 2010. Vol. 74, No. 12. P. 5–26. (in Russian)
- Baransky V.A., Koroleva T.A., Senchonok T.A. On the partition lattice of all integers. Sib. Èlektron. Mat. Izv., 2016. Vol. 13. P. 744–753. DOI: 10.17377/semi.2016.13.060 (in Russian)
- Baranskii V.A., Sen’chonok T.A. Chromatic uniqueness of elements of height ≤ 3 in lattices of complete multipartite graphs. Proc. Steklov Inst. Math., 2012. Vol. 279. P. 1–16. DOI: 10.1134/S0081543812090015
- Brylawski T. The lattice of integer partitions. Discrete Math., 1973. Vol. 6, No. 3. P. 210–219. DOI: 10.1016/0012-365X(73)90094-0
- Dong F.M., Koh K.M., Teo K.L. Chromatic Polynomials and Chromaticity of Graphs. Hackensack: World Scientific, 2005. 384 p. DOI: 10.1142/5814
- Farrell E.J. On chromatic coefficients. Discrete Math., 1980. Vol. 29, No. 3. P. 257–264. DOI: 10.1016/0012-365X(80)90154-5
- Gein P.A. About chromatic uniqueness of complete tripartite graph \(K(s,s-1,s-k)\), where \(k\geq 1\) and \(s-k\geq 2\). Sib. Èlektron. Mat. Izv., 2016. Vol. 13. P. 331–337. DOI: 10.17377/semi.2016.13.027 (in Russian)
- Gein P.A. About chromatic uniqueness of some complete tripartite graphs. Sib. Èlektron. Mat. Izv., 2017. Vol. 14. P. 1492–1504. DOI: 10.17377/semi.2017.14.129 (in Russian)
- Gein P.A. On garlands in χ-uniquely colorable graphs. Sib. Èlektron. Mat. Izv., 2019. Vol. 16. P. 1703–1715. DOI: 10.33048/semi.2019.16.120
- Koh K.M., Teo K.L. The search for chromatically unique graphs. Graphs Combin., 1990. Vol. 6, No. 3. P. 259–285. DOI: 10.1007/BF01787578
- Koroleva T.A. Chromatic uniqueness of some complete tripartite graphs. I. Trudy Inst. Mat. i Mekh. UrO RAN, 2007. Vol. 13, No. 3. P. 65–83. (in Russian)
- Koroleva T.A. Chromatic uniqueness of some complete tripartite graphs. II. Izv. Ural. Gos. Univ. Mat. Mekh. Inform., 2010. Vol. 74. P. 39–56. (in Russian)
- Li N.Z., Liu R.Y. The chromaticity of the complete \(t\)-partite graph \(K(1, P_2 \ldots p_t)\). J. Xinjiang Univ. Natur. Sci., 1990. Vol. 7, No. 3. P. 95–96.
- Senchonok T.A. Chromatic uniqueness of elements of height 2 in lattices of complete multipartite graphs. Trudy Inst. Mat. i Mekh. UrO RAN, 2011. Vol. 17, No. 3. P. 271–281. (in Russian)
- Zhao H. Chromaticity and Adjoint Polynomials of Graphs. Zutphen, Netherlands: Wöhrmann Print Service, 2005. 179 p.
- Zhao H., Li X., Zhang Sh., Liu R. On the minimum real roots of the σ-polynomials and chromatic uniqueness of graphs. Discrete Math., 2004. Vol. 281, No. 1–3. P. 277–294. DOI: 10.1016/j.disc.2003.06.010
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.