Alexander G. Chentsov     (Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 S. Kovalevskaya Str., Ekaterinburg, 620108, Russian Federation)


Constructions related to products of maximal linked systems (MLSs) and MLSs  on the product of widely understood measurable spaces are considered (these measurable spaces are defined as sets equipped with \(\pi\)-systems of their subsets; a \(\pi\)-system is a family closed with respect to finite intersections). We compare families of MLSs on initial spaces and MLSs on the product. Separately, we consider the case of ultrafilters. Equipping set-products with topologies, we use the box-topology and the Tychonoff product of Stone-type topologies. The properties of compaction and homeomorphism hold, respectively.


Maximal linked system, Topology, Ultrafilter.

Full Text:



  1. Aleksandrov P.S. Vvedenie v teoriyu mnozhestv i obshchuyu topologiyu [Introduction to Set Theory and General Topology]. M.: Nauka, 1977. 368 p. (in Russian)
  2. Arkhangel’skii A.V. Compactness. Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 1989. Vol. 50. P. 5–128 (in Russian)
  3. Chentsov A.G. Filters and ultrafilters in the constructions of attraction sets. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011. No. 1. P. 113–142. (in Russian)
  4. Chentsov A.G. On the question of representation of ultrafilters and their application in extension constructions. Proc. Steklov Inst. Math., 2014. Vol. 287, No. Suppl. 1. P. 29–48. DOI: 10.1134/S0081543814090041
  5. Chentsov A.G. Some representations connected with ultrafilters and maximal linked systems. Ural Math. J., 2017. Vol. 3, No. 2. P. 100–121. DOI: 10.15826/umj.2017.2.012
  6. Chentsov A.G. Ultrafilters and maximal linked systems of sets. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2017. Vol. 27, No. 3. P. 365–388. (in Russian) DOI: 10.20537/vm170307
  7. Chentsov A.G. Bitopological spaces of ultrafilters and maximal linked systems. Proc. Steklov Inst. Math., 2019. Vol. 305, No. Suppl. 1. P. S24–S39. DOI: 10.1134/S0081543819040059
  8. Chentsov A.G. On the supercompactness of ultrafilter space with the topology of Wallman type. Izv. Inst. Mat. Inform., 2019. Vol. 54. P. 74–101. DOI: 10.20537/2226-3594-2019-54-07
  9. Chentsov A.G. Supercompact spaces of ultrafilters and maximal linked systems. Trudy Inst. Mat. i Mekh. UrO RAN, 2019. Vol. 25, No. 2. P. 240–257. (in Russian) DOI: 10.21538/0134-4889-2019-25-2-240-257
  10. Chentsov A.G. To a question on the supercompactness of ultrafilter spaces. Ural Math. J., 2019. Vol. 5, No. 1. P. 31–47. DOI: 10.15826/umj.2019.1.004
  11. Chentsov A.G. Filters and linked families of sets. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2020. Vol. 30, No. 3. P. 444–467. DOI: 10.35634/vm200307
  12. Chentsov A.G. Some topological properties of the space of maximal linked systems with topology of Wallman type. Izv. Inst. Mat. Inform., 2020. Vol. 56. P. 122–137. (in Russian) DOI: 10.35634/2226-3594-2020-56-09
  13. Chentsov A.G. Maximal linked systems on families of measurable rectangles. Russian Universities Reports. Mathematics, 2021. Vol. 26, No. 133. P. 77–104. (in Russian) DOI: 10.20310/2686-9667-2021-26-133-77-104
  14. Chentsov A.G. Maximal linked systems on products of widely understood measurable spaces. Russian Universities Reports. Mathematics, 2021. Vol. 26, No. 134. P. 35–69. (in Russian) DOI: 10.20310/2686-9667-2021-26-134-182-215
  15. Engelking R. General Topology. Warsaw: PWN, 1977. 751 p. 
  16. Fedorchuk V.V., Filippov V.V. Obshchaya topologiya. Osnovnye konstrukcii [General Topology. Basic Foundations]. Moscow: Fizmatlit, 2006. 332 p. (in Russian)
  17. De Groot J. Superextensions and supercompactness. In: I. Intern. Symp. on Extension Theory of Topological Structures and its Applications. Berlin: VEB Deutscher Verlag Wis., 1969. P. 89–90.
  18. Kelley J.L. General Topology. Toronto, London, New York, Princeton, New Jersey: D. Van Nostrand Company, Inc. 1957. 298 p. 
  19. Kuratowski K., Mostowski A. Set Theory. Amsterdam etc.: North Holland Publishing Company, 1968. 416 p. 
  20. Van Mill J. Supercompactness and Wallman Spaces. Amsterdam: Math. Center Tract, 1977. 244 p. 
  21. Strok M., Szymański A. Compact metric spaces have binary bases. Fund. Math., 1975. Vol. 89, No. 1. P. 81–91. DOI: 10.4064/fm-89-1-81-91
  22. Warga J. Optimal Control of Differential and Functional Equations. NY, London: Academic Press, 1972. 531 p. DOI: 10.1016/C2013-0-11669-8


Article Metrics

Metrics Loading ...


  • There are currently no refbacks.