ON AN EXTREMAL PROBLEM FOR POLYNOMIALS WITH FIXED MEAN VALUE

Alexander G. Babenko     (Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of Russian Academy of Sciences; Institute of Mathematics and Computer Science of the Ural Federal University, Ekaterinburg, Russian Federation)

Abstract


Let \(T_n^+\) be the set of nonnegative trigonometric polynomials \(\tau_n\) of degree \(n\) that are strictly positive at zero. For \(0\le\alpha\le2\pi/(n+2),\) we find the minimum of the mean value of polynomial \((\cos\alpha-\cos{x})\tau_n(x)/\tau_n(0)\) over \(\tau_n\in T_n^+\) on the period \([-\pi,\pi).\)


Keywords


Trigonometric polynomials, Extremal problem

Full Text:

PDF

References


Krylov V.I. Approximate calculation of integrals, Fizmatgiz, Moscow, 1959. [Russian]

Pólya G., Szegő G. Problems and theorems in analysis, Vol. 2, Berlin: Springer, 1998.

Prudnikov A.P., Brychkov Yu. A., Marichev O.I. Integrals and series, Moscow: Nauka, 1981. [Russian]

Fejér L. Über trigonometrische Polynome, Gesammelte Arbeit. Budapest: Akad. Kiado, Bd. 1, 1970. P. 842–872.




DOI: http://dx.doi.org/10.15826/umj.2016.1.001

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.