ON AN EXTREMAL PROBLEM FOR POLYNOMIALS WITH FIXED MEAN VALUE
Abstract
Let \(T_n^+\) be the set of nonnegative trigonometric polynomials \(\tau_n\) of degree \(n\) that are strictly positive at zero. For \(0\le\alpha\le2\pi/(n+2),\) we find the minimum of the mean value of polynomial \((\cos\alpha-\cos{x})\tau_n(x)/\tau_n(0)\) over \(\tau_n\in T_n^+\) on the period \([-\pi,\pi).\)
Keywords
Full Text:
PDFReferences
Krylov V.I. Approximate calculation of integrals, Fizmatgiz, Moscow, 1959. [Russian]
Pólya G., Szegő G. Problems and theorems in analysis, Vol. 2, Berlin: Springer, 1998.
Prudnikov A.P., Brychkov Yu. A., Marichev O.I. Integrals and series, Moscow: Nauka, 1981. [Russian]
Fejér L. Über trigonometrische Polynome, Gesammelte Arbeit. Budapest: Akad. Kiado, Bd. 1, 1970. P. 842–872.
Article Metrics
Refbacks
- There are currently no refbacks.