INEQUALITIES FOR A CLASS OF MEROMORPHIC FUNCTIONS WHOSE ZEROS ARE WITHIN OR OUTSIDE A GIVEN DISK

Mohd Yousf Mir     (Department of Mathematics, Central University of Kashmir, Ganderbal-191201, India)
Shah Lubna Wali     (Department of Mathematics, Central University of Kashmir, Ganderbal-191201, India)
Wali Mohammad Shah     (Department of Mathematics, Central University of Kashmir, Ganderbal-191201, India)

Abstract


In this paper, we consider a class of meromorphic functions \(r(z)\) having an \(s\)-fold zero at the origin and establish some inequalities of Bernstein and Turán type for the modulus of the derivative of rational functions  in the sup-norm on the disk in the complex plane. These results produce some sharper inequalities while taking into account the placement of zeros of the underlying rational function. Moreover, many inequalities for polynomials and polar derivatives follow as special cases. In particular, our results generalize as well as refine a result due Dewan et al. [6].

 


Keywords


Polynomial, Rational function, \(s\)-fold zeros, Bernstein inequality.

Full Text:

PDF

References


  1. Aziz A. A refinement of an inequality of S. Bernstein. J. Math. Anal. Appl., 1989. Vol. 142, No. 1. P. 226–235. DOI: 10.1016/0022-247X(89)90370-3
  2. Aziz A., Shah W.M. Some refinements of Bernstein-type inequalities for rational functions. Glas. Math., 1997. Vol. 32, No. 1. P. 29–37.
  3. Aziz-Ul-Auzeem A., Zargar B.A. Some properties of rational functions with prescribed poles. Canad. Math. Bull., 1999. Vol. 42, No. 4. P. 417–426. DOI: 10.4153/CMB-1999-049-0
  4. Akhter T., Malik S.A., Zargar B.A. Turán type inequalities for rational functions with prescribed poles. Int. J. Nonlinear Anal. Appl., 2022. Vol. 13, No. 1. P. 1003–1009. DOI: 10.22075/ijnaa.2021.23145.2484
  5. Bernstein S.N. Sur la limitation des dérivées des polynomes. C. R. Acad. Sci. Paris, 1930. Vol 190. P. 338–340. (in French)
  6. Dewan K.K., Hans S. Generalization of certain well-known polynomial inequalities. J. Math Anal. Appl., 2010. Vol. 363, No. 1. P. 38–41. DOI: 10.1016/j.jmaa.2009.07.049
  7. Garcia S.R., Mashreghi J., Ross W.T. Finite Blaschke Products and Their Connections. Cham: Springer, 2018. 328 p. DOI: 10.1007/978-3-319-78247-8
  8. Hans S., Tripathi D., Mogbademu A.A., Babita Tyagi. Inequalities for rational functions with prescribed poles. J. Interdiscip. Math., 2018. Vol. 21, No. 1. P. 157–169. DOI: 10.1080/09720502.2015.1033837
  9. Lax P.D. Proof of a conjecture of P. Erdös on the derivative of a polynomial. Bull. Amer. Math. Soc., 1944. Vol. 50. P. 509–513. DOI: 10.1090/S0002-9904-1944-08177-9
  10. Li X., Mohapatra R.N., Rodriguez R.S. Bernstein-type inequalities for rational functions with prescribed poles. J. London Math. Soc., 1995. Vol. 51. P. 523–531. DOI: 10.1112/jlms/51.3.523
  11. Turán P. Über die ableitung von polynomen. Compos. Math., 1939. Vol. 7. P. 89–95. (in German)
  12. Wali S.L., Shah W.M. Applications of the Schwarz lemma to inequalities for rational functions with prescribed poles. J. Anal., 2017. Vol. 25, No. 1. P. 43–53. DOI: 10.1007/s41478-016-0025-2




DOI: http://dx.doi.org/10.15826/umj.2023.1.008

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.