ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS OF MATRIX POLYNOMIALS
Abstract
Let \(\mathbb{C}^{m\times m}\) be the set of all \(m\times m\) matrices whose entries are in \(\mathbb{C},\) the set of complex numbers. Then \(P(z):=\sum\limits_{j=0}^nA_jz^j,\) \(A_j\in \mathbb{C}^{m\times m},\) \(0\leq j\leq n\) is called a matrix polynomial. If \(A_{n}\neq 0\), then \(P(z)\) is said to be a matrix polynomial of degree \(n\). In this paper we prove some results for the bound estimates of the eigenvalues of some lacunary type of matrix polynomials.
Keywords
Matrix polynomial, Eigenvalue, Positive-definite matrix, Cauchy’s theorem, Spectral radius.
Full Text:
PDFReferences
- Bini D.A., Noferini V., Sharify M. Locating the eigenvalues of matrix polynomials. SIAM J. Matrix Anal. Appl., 2013. Vol. 34, No. 4. P. 1708–1727. DOI: 10.1137/120886741
- Cauchy A.-L. Mémoire sur la Résolution des Équations numériques et sur la Théorie de l’Élimination. Paris: de Bure Frères, 1829. 64 p. (in French)
- Dehmer M., Mowshowitz A. Bounds on the moduli of polynomial zeros. Appl. Math. Comp., 2011. Vol. 218, No. 8. P. 4128–4137. DOI: 10.1016/j.amc.2011.09.043
- Gohberg I., Lancaster P., Rodman L. Matrix Polynomials. New York: Academic Press, 1982. 433 p.
- Higham N.J., Tisseur F. Bounds for eigenvalues of matrix polynomials. Linear Algebra Appl., 2003. Vol. 358, No. 1–3. P. 5–22. DOI: 10.1016/S0024-3795(01)00316-0
- Horn R.A., Johnson C.R. Matrix Analysis. Cambridge: Cambridge University Press, 2013. 643 p. DOI: 10.1017/CBO9780511810817
- Marden M. Geometry of Polynomials. Math. Surveys Monogr., vol. 3. Providence, RI: American Mathematical Society, 1966. 243 p.
- Melman A. Generalization and variations of Pellet’s theorem for matrix polynomials. Linear Algebra Appl., 2013. Vol. 439, No. 5. P. 1550–1567. DOI: 10.1016/j.laa.2013.05.003
- Tisseur F., Meerbergen K. The quadratic eigenvalue problem. SIAM Review, 2001. Vol. 43, No. 2. P. 235–286.
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.