INTEGRAL ANALOGUE OF TURÁN-TYPE INEQUALITIES CONCERNING THE POLAR DERIVATIVE OF A POLYNOMIAL
Abstract
If \(w(\zeta)\) is a polynomial of degree $n$ with all its zeros in \(|\zeta|\leq \Delta, \Delta\geq 1\) and any real \(\gamma\geq 1\), Aziz proved the integral inequality [1] $$
\left\lbrace\int_{0}^{2\pi}\left|1+\Delta^ne^{i\theta}\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}\max_{|\zeta|=1}|w^{\prime}(\zeta)|\geq n\left\lbrace\int_{0}^{2\pi}\left|w\left(e^{i\theta}\right)\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}.
$$
In this article, we establish a refined extension of the above integral inequality by using the polar derivative instead of the ordinary derivative consisting of the leading coefficient and the constant term of the polynomial. Besides, our result also yields other intriguing inequalities as special cases.
Keywords
Full Text:
PDFReferences
- Aziz A. Integral mean estimates for polynomials with restricted zeros. J. Approx. Theory, 1988. Vol. 55, No. 2. P. 232–239. DOI: 10.1016/0021-9045(88)90089-5
- Aziz A., Dawood Q.M. Inequalities for a polynomial and its derivatives. J. Approx. Theory, 1988. Vol. 54, No. 3. P. 306–313. DOI: 10.1016/0021-9045(88)90006-8
- Aziz A., Rather N.A. A refinement of a theorem of Paul Turán concerning polynomials. Math. Inequal. Appl., 1998. Vol. 1, No. 2. P. 231–238. DOI: 10.7153/mia-01-21
- Aziz A., Shah W.M. Inequalities for a polynomial and its derivative. Math. Inequal. Appl., 2004. Vol. 7. No. 3. P. 379–391. DOI: 10.7153/mia-07-39
- Bernstein S. Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réele. Paris: Gauthier-Villars, 1926. 207 p. (in French)
- Boas Jr R.P., Rahman Q.I. \({L}^p\) inequalities for polynomials and entire functions. Arch. Rational Mech. Anal., 1962. Vol. 11. P. 34–39. DOI: 10.1007/BF00253927
- Dewan K.K., Singh N., Mir A., Bhat A. Some inequalities for the polar derivative of a polynomial. Southeast Asian Bull. Math., 2010. Vol. 34. P. 69–77.
- Gardner R.B., Govil N.K., Musukula S.R. Rate of growth of polynomials not vanishing inside a circle. J. Inequal. Pure Appl. Math., 2005. Vol. 6. No. 2. Art. no. 53.
- Govil N.K. On the derivative of a polynomial. Proc. Amer. Math. Soc., 1973. Vol. 41, No. 2. P. 543–546. DOI: 10.2307/2039130
- Govil N.K. Some inequalities for the derivative of a polynomials. J. Approx. Theory, 1991. Vol. 66, No. 1. P. 29–35. DOI: 10.1016/0021-9045(91)90052-C
- Hardy G.H. The mean value of the modulus of an analytic function. Proc. Lond. Math. Soc., 1915. Vol. s2 14, No. 1. P. 269–277. DOI: 10.1112/plms/s2 14.1.269
- Malik M.A. An integral mean estimates for polynomials. Proc. Amer. Math. Soc., 1984. Vol. 91, No. 2. P. 281–284. DOI: 10.2307/2044642
- Malik M.A. On the derivative of a polynomial. J. Lond. Math. Soc., 1969. Vol. s2-1, No. 1. P. 57–60. DOI: 10.1112/jlms/s2-1.1.57
- Mendeleev D. Issledovanie vodnykh rastvorov po udel’nomu vesu [Investigations of Aqueous Solutions Based on Specific Gravity]. St. Petersburg: Tip. V. Demakova, 1887. 521 p. (in Russain)
- Milovanovic G.V., Mir A., Malik A. Estimates for the polar derivative of a constrained polynomial on a disk. Cubo, 2022. Vol. 24. No. 3. P. 541–554. DOI: 10.56754/0719-0646.2403.0541
- Rahman Q.I., Schmeisser G. \(L^p\) inequalities for polynomials. J. Approx. Theory, 1988. Vol. 53, No. 1. P. 26–32. DOI: 10.1016/0021-9045(88)90073-1
- Rather N.A., Bhat F.A. Inequalities for the polar derivative of a polynomial. Appl. Math. E-Notes, 2017. Vol. 17. P. 231–241.
- Rudin W. Real and Complex Analysis. McGraw-Hill Publ. Comp., 1977. 416 p.
- Singh T.B., Chanam B. Generalizations and sharpenings of certain Bernstein and Turán types of inequalities for the polar derivative of polynomial. J. Math. Inequal., 2021. Vol. 15, No. 4. P. 1663–1675. DOI: 10.7153/jmi-2021-15-114
- Taylor A.E. Introduction to Functional Analysis. New York: John Wiley & Sons Inc., 1958.
- Turan P. Über die ableitung von polynomen. Compos. Math., 1939. Vol. 7. P. 89–95. (in German)
Article Metrics
Refbacks
- There are currently no refbacks.