INTEGRAL ANALOGUE OF TURÁN-TYPE INEQUALITIES CONCERNING THE POLAR DERIVATIVE OF A POLYNOMIAL

Mayanglambam Singhajit Singh     (Department of Mathematics, National Institute of Technology Manipur, Imphal, 795004, India)
Barchand Chanam     (Department of Mathematics, National Institute of Technology Manipur, Imphal, 795004, India)

Abstract


If \(w(\zeta)\) is a polynomial of degree $n$ with all its zeros in \(|\zeta|\leq \Delta, \Delta\geq 1\) and any real \(\gamma\geq 1\), Aziz proved the integral inequality [1] $$
\left\lbrace\int_{0}^{2\pi}\left|1+\Delta^ne^{i\theta}\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}\max_{|\zeta|=1}|w^{\prime}(\zeta)|\geq n\left\lbrace\int_{0}^{2\pi}\left|w\left(e^{i\theta}\right)\right|^{\gamma}d\theta\right\rbrace^{{1}/{\gamma}}.
$$ 
In this article, we establish a refined extension of the above integral inequality by using the polar derivative instead of the ordinary derivative consisting of the leading coefficient and the constant term of the polynomial. Besides, our result also yields other intriguing inequalities as special cases.


Keywords


Polar derivative, Turán-type inequalities, Integral inequalities

Full Text:

PDF

References


  1. Aziz A. Integral mean estimates for polynomials with restricted zeros. J. Approx. Theory, 1988. Vol. 55, No. 2. P. 232–239. DOI: 10.1016/0021-9045(88)90089-5
  2. Aziz A., Dawood Q.M. Inequalities for a polynomial and its derivatives. J. Approx. Theory, 1988. Vol. 54, No. 3. P. 306–313. DOI: 10.1016/0021-9045(88)90006-8
  3. Aziz A., Rather N.A. A refinement of a theorem of Paul Turán concerning polynomials. Math. Inequal. Appl., 1998. Vol. 1, No. 2. P. 231–238. DOI: 10.7153/mia-01-21
  4. Aziz A., Shah W.M. Inequalities for a polynomial and its derivative. Math. Inequal. Appl., 2004. Vol. 7. No. 3. P. 379–391. DOI: 10.7153/mia-07-39
  5. Bernstein S. Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réele. Paris: Gauthier-Villars, 1926. 207 p. (in French)
  6. Boas Jr R.P., Rahman Q.I. \({L}^p\) inequalities for polynomials and entire functions. Arch. Rational Mech. Anal., 1962. Vol. 11. P. 34–39. DOI: 10.1007/BF00253927
  7. Dewan K.K., Singh N., Mir A., Bhat A. Some inequalities for the polar derivative of a polynomial. Southeast Asian Bull. Math., 2010. Vol. 34. P. 69–77.
  8. Gardner R.B., Govil N.K., Musukula S.R. Rate of growth of polynomials not vanishing inside a circle. J. Inequal. Pure Appl. Math., 2005. Vol. 6. No. 2. Art. no. 53.
  9. Govil N.K. On the derivative of a polynomial. Proc. Amer. Math. Soc., 1973. Vol. 41, No. 2. P. 543–546. DOI: 10.2307/2039130
  10. Govil N.K. Some inequalities for the derivative of a polynomials. J. Approx. Theory, 1991. Vol. 66, No. 1. P. 29–35. DOI: 10.1016/0021-9045(91)90052-C
  11. Hardy G.H. The mean value of the modulus of an analytic function. Proc. Lond. Math. Soc., 1915. Vol. s2 14, No. 1. P. 269–277. DOI: 10.1112/plms/s2 14.1.269
  12. Malik M.A. An integral mean estimates for polynomials. Proc. Amer. Math. Soc., 1984. Vol. 91, No. 2. P. 281–284. DOI: 10.2307/2044642
  13. Malik M.A. On the derivative of a polynomial. J. Lond. Math. Soc., 1969. Vol. s2-1, No. 1. P. 57–60. DOI: 10.1112/jlms/s2-1.1.57
  14. Mendeleev D. Issledovanie vodnykh rastvorov po udel’nomu vesu [Investigations of Aqueous Solutions Based on Specific Gravity]. St. Petersburg: Tip. V. Demakova, 1887. 521 p. (in Russain)
  15. Milovanovic G.V., Mir A., Malik A. Estimates for the polar derivative of a constrained polynomial on a disk. Cubo, 2022. Vol. 24. No. 3. P. 541–554. DOI: 10.56754/0719-0646.2403.0541
  16. Rahman Q.I., Schmeisser G. \(L^p\) inequalities for polynomials. J. Approx. Theory, 1988. Vol. 53, No. 1. P. 26–32. DOI: 10.1016/0021-9045(88)90073-1
  17. Rather N.A., Bhat F.A. Inequalities for the polar derivative of a polynomial. Appl. Math. E-Notes, 2017. Vol. 17. P. 231–241.
  18. Rudin W. Real and Complex Analysis. McGraw-Hill Publ. Comp., 1977. 416 p.
  19. Singh T.B., Chanam B. Generalizations and sharpenings of certain Bernstein and Turán types of inequalities for the polar derivative of polynomial. J. Math. Inequal., 2021. Vol. 15, No. 4. P. 1663–1675. DOI: 10.7153/jmi-2021-15-114
  20. Taylor A.E. Introduction to Functional Analysis. New York: John Wiley & Sons Inc., 1958.
  21. Turan P. Über die ableitung von polynomen. Compos. Math., 1939. Vol. 7. P. 89–95. (in German)




DOI: http://dx.doi.org/10.15826/umj.2024.2.012

Article Metrics

Metrics Loading ...

Refbacks

  • There are currently no refbacks.