ON WIDTHS OF SOME CLASSES OF ANALYTIC FUNCTIONS IN A CIRCLE
Abstract
We calculate exact values of some $n$-widths of the class \(W_{q}^{(r)}(\Phi),\) \(r\in\mathbb{Z}_{+},\) in the Banach spaces \(\mathscr{L}_{q,\gamma}\) and \(B_{q,\gamma},\) \(1\leq q\leq\infty,\) with a weight \(\gamma\). These classes consist of functions \(f\) analytic in the unit circle, their \(r\)th order derivatives \(f^{(r)}\) belong to the Hardy space \(H_{q},\) \(1\leq q\leq\infty,\) and the averaged moduli of smoothness of boundary values of \(f^{(r)}\) are bounded by a given majorant \(\Phi\) at the system of points \(\{\pi/(2k)\}_{k\in\mathbb{N}}\); more precisely,
$$ \frac{k}{\pi-2}\int_{0}^{\pi/(2k)}\omega_{2}(f^{(r)},2t)_{H_{q,\rho}}dt\leq \Phi\left(\frac{\pi}{2k}\right) $$
for all \(k\in\mathbb{N}\), \(k>r.\)
Keywords
Full Text:
PDFReferences
- Ainulloev N., Taikov L.V. Best approximation in the sense of Kolmogorov of classes of functions analytic in the unit disc. Math. Notes, 1986. Vol. 40, No. 3. P. 699–705. DOI: 10.1007/BF01142473
- Babenko K.I. Best approximations for a class of analytic functions. Izv. Akad. Nauk SSSR. Ser. Mat., 1958. Vol. 22, No. 5. P. 631–640. (in Russian)
- Dveǐrin M.Z. Widths and ε-entropy of classes of analytic functions in the unit disc. Teor. Funkts., Funkts. Anal. Prilozh., 1975. Vol. 23, P. 32–46. (in Russian)
- Dvejrin M.Z., Chebanenko I.V. On the polynomial approximation in Banach spaces of analytic functions. In: Theory of mappings and approximation of functions. Collect. Sci. Works. Kiev: Naukova Dumka, 1983. P. 62–73. (in Russian)
- Farkov Yu.A. Widths of Hardy classes and Bergman classes on the ball in \(\mathbb{C}^{n}\). Russian Math. Surveys, 1990. Vol. 45, No. 5. P. 229–231. DOI: 10.1070/RM1990v045n05ABEH002677
- Farkov Yu.A. \(n\)-Widths, Faber expansion, and computation of analytic functions. J. Complexity, 1996. Vol. 12, No. 1. P. 58–79. DOI: 10.1006/jcom.1996.0007
- Fisher S.D., Stessin M.I. The \(n\)-width of the unit ball of \(H^{q}\). J. Approx. Theory, 1991. Vol. 67, No. 3. P. 347–356. DOI: 10.1016/0021-9045(91)90009-Y
- Pinkus A. \(n\)-Widths in Approximation Theory. Heidelberg: Springer-Verlag, 1985. 252 p. DOI: 10.1007/978-3-642-69894-1
- Saidusainov M.S. On the best linear method of approximation of some classes analytic functions in the weighted Bergman space. Chebyshevskii Sb., 2016. Vol. 17, No. 1. P. 240–253. (in Russian)
- Saidusainov M.S. \(\mathscr{K}\)-functionals and exact values of n-widths in the Bergman space. Ural Math. J., 2017. Vol. 3, No. 2. P. 74–81. DOI: 10.15826/umj.2017.2.010
- Saidusainov M.S. Analysis of a theorem on the Jackson–Stechkin inequality in the Bergman space \(B_{2}\). Trudy Inst. Mat. Mekh. UrO RAN, 2018. Vol. 24, No. 4. P. 217–224. (in Russian) DOI: 10.21538/0134-4889-2018-24-4-217-224
- Saidusainov M.S. Some inequalities between the best simultaneous approximation and the modulus of continuity in a weighted Bergman space. Ural Math. J., 2023. Vol. 9, No. 2. P. 165–174. DOI: 10.15826/umj.2023.2.014
- Shabozov M.Sh. Widths of some classes of analytic functions in the Bergman space. Dokl. Math., 2002. Vol. 65, No. 2. P. 194–197.
- Shabozov M.Sh. On the best simultaneous approximation of functions in the Hardy space. Trudy Inst. Mat. Mekh. UrO RAN, 2023. Vol. 29, No. 4. P. 283–291. (in Russian) DOI: 10.21538/0134-4889-2023-29-4-283-291
- Shabozov M.Sh. On the best simultaneous approximation in the Bergman space \(B_{2}\). Math. Notes, 2023. Vol. 114. P. 377–386. DOI: 10.1134/S0001434623090080
- Shabozov M.Sh., Saidusaynov M.S. Mean-square approximation of complex variable functions by Fourier series in the weighted Bergman space. Vladikavkazskii Mat. Zh., 2018. Vol. 20, No. 1. P. 86–97. (in Russian) DOI: 10.23671/VNC.2018.1.11400
- Shabozov M.Sh., Saidusaynov M.S. Upper bounds for the approximation of certain classes of functions of a complex variable by Fourier series in the space \(L_2\) and \(n\)-widths. Math. Notes, 2018. Vol. 103. P. 656–668. DOI: 10.1134/S0001434618030343
- Shabozov M.Sh., Saidusainov M.S. Mean-square approximation of functions of a complex variable by Fourier sums in orthogonal systems. Trudy Inst. Mat. Mekh. UrO RAN, 2019. Vol. 25, No. 2. P. 258–272. (in Russian) DOI: 10.21538/0134-4889-2019-25-2-258-272
- Shabozov M.Sh., Saidusaynov M.S. approximation of functions of a complex variable by Fourier sums in orthogonal systems in \(L_2\). Russ. Math., 2020. Vol. 64. P. 56–62. DOI: 10.3103/S1066369X20060080
- Shabozov M.Sh., Saidusainov M.S. Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space \(B_{2,\gamma}\). Chebyshevskii Sb., 2022. Vol. 23, No. 1. P. 167–182. (in Russian) DOI: 10.22405/2226-8383-2022-23-1-167-182
- Shabozov M.Sh., Shabozov O.Sh. Widths of some classes of analytic functions in the Hardy space \(H_2\). Math. Notes, 2000. Vol. 68, No. 5–6. P. 675–679. DOI: 10.1023/A:1026692112651
- Shabozov M.Sh., Shabozov O.Sh. On the best approximation of some classes of analytic functions in weighted Bergman spaces. Dokl. Math., 2007. Vol. 75, No. 1. P. 97–100. DOI: 10.1134/S1064562407010279
- Shabozov M.Sh., Yusupov G.Y. Best approximation and width of some classes of analytic functions. Dokl. Math., 2002. Vol. 65, No. 1. P. 111–113.
- Shabozov M.Sh., Yusupov G.A. On the best polynomial approximation of functions in the Hardy space \(H_{q,R} \, (1\leq q\leq\infty, R\geq 1)\). Chebyshevskii Sb., 2023. Vol. 24, No. 1. P. 182–193. (in Russian) DOI: 10.22405/2226-8383-2023-24-1-182-193
- Shikhalev N.I. An inequality of Bernstein-Markov kind for analytic functions. Dokl. Akad. Nauk Azerb. SSR, 1975. Vol. 31, No. 8. P. 9–14. (in Russian)
- Smirnov V.I., Lebedev N.A. A Constructive Theory of Functions of a Complex Variable. Moscow-Leningrad: Nauka. 1964. 440 p.
- Taikov L.V. On the best approximation in the mean of certain classes of analytic functions. Math. Notes, 1967. Vol. 1. P. 104–109. DOI: 10.1007/BF01268058
- Taikov L.V. Diameters of certain classes of analytic functions. Math. Notes, 1977. Vol. 22. P. 650–656. DOI: 10.1007/BF01780976
- Tikhomirov V.M. Diameters of sets in function spaces and the theory of best approximations. Russian Math. Surveys, 1960. Vol. 15, No. 3. P. 75–111. DOI: 10.1070/rm1960v015n03abeh004093
- Tikhomirov V.M. Approximation Theory. In: Analysis II. Convex Analysis and Approximation Theory, Gamkrelidze R.V. eds. Encyclopaedia Math. Sci., vol. 14. Berlin, Heidelberg: Springer, 1990. P. 93–243. DOI: 10.1007/978-3-642-61267-1_2
- Vakarchuk S.B. Widths of certain classes of analytic functions in the Hardy space \(H_2\). Ukr. Math. J., 1989. Vol. 41, No. 6. P. 686–689. DOI: 10.1007/BF01060570
- Vakarchyuk S.B. Best linear methods of approximation and widths of classes of analytic functions in a disk. Math. Notes, 1995. Vol. 57. P. 21–27. DOI: 10.1007/BF02309390
- Vakarchuk S.B. Exact values of widths for certain functional classes. Ukr. Math. J., 1996. Vol. 48. P. 151–153. DOI: 10.1007/BF02390993
- Vakarchyuk S.B. Exact values of widths of classes of analytic functions on the disk and best linear approximation methods. Math. Notes, 2002. Vol. 72. P. 615–619. DOI: 10.1023/A:1021496620022
- Vakarchuk S.B. On some extremal problems of approximation theory in the complex plane. Ukr. Math. J., 2004. Vol. 56. P. 1371–1390. DOI: 10.1007/s11253-005-0122-x
- Vakarchuk S.B., Zabutnaya V.I. Best linear approximation methods for functions of Taikov classes in the Hardy spaces \(H_{q,\rho}\), \({q\geq 1,}\) \({0<\rho\leq 1}\). Math. Notes, 2009. Vol. 85. P. 322–327. DOI: 10.1134/S000143460903002X
Article Metrics
Refbacks
- There are currently no refbacks.