INTERPOLATION WITH MINIMUM VALUE OF \(L_{2}\)-NORM OF DIFFERENTIAL OPERATOR
Abstract
For the class of bounded in \(l_{2}\)-norm interpolated data, we consider a problem of interpolation on a finite interval \([a,b]\subset\mathbb{R}\) with minimal value of the \(L_{2}\)-norm of a differential operator applied to interpolants. Interpolation is performed at knots of an arbitrary \(N\)-point mesh \(\Delta_{N}:\ a\leq x_{1}<x_{2}<\cdots <x_{N}\leq b\). The extremal function is the interpolating natural \({\cal L}\)-spline for an arbitrary fixed set of interpolated data. For some differential operators with constant real coefficients, it is proved that on the class of bounded in \(l_{2}\)-norm interpolated data, the minimal value of the \(L_{2}\)-norm of the differential operator on the interpolants is represented through the largest eigenvalue of the matrix of a certain quadratic form.
Keywords
Full Text:
PDFReferences
- Bezhaev A.Yu., Vasilenko V.A. Variation Spline Theory. Ser. Numer. Anal. Bulletin No. 3. Novosibirsk: NCC Publisher, 1993. 258 p.
- Favard J. Sur l’interpolation. J. Math. Pures Appl., 1940. Vol. 19, No. 1–4. P. 281–306. (in French)
- Fichtenholz G.M. Kurs differencial’nogo i integral’nogo ischisleniya [Course of Differential and IntegralCalculus]. Vol. 1. Moscow: Nauka Publ., 1970. 608 p. (in Russian)
- Fisher S.D., Jerome J.W. Minimum Norm Extremals in Function Spaces: With Applications to Classical and Modern Analysis. Lecture Notes in Math., vol. 479. 1975. 214 p. DOI: 10.1007/BFb0097059
- Jerome J.W., Schumaker L.L. A note on obtaining natural spline functions by the abstract approach of Atteia and Laurent. SIAM J. Numer. Anal., 1968. Vol. 5, No. 4. P. 657–663. DOI: 10.1137/0705052
- Karlin S. Total Positivity. Vol. 1. London: Stanford Univer. Press, 1968. 576 p.
- Karlin S., Studden WJ. Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Appl. Math., vol. 15. New York: Interscience, 1966. 586 p.
- Malozyomov V.N., Pevny A.B. Polinomial’nye splajny [Polynomial Splines]. Leningrad: Leningrad State University, 1986. 120 p. (in Russian)
- Novikov S.I. Optimal interpolation on an interval with the smallest mean-square norm of the \(r\)-th derivative. Trudy Inst. Mat. i Mekh. UrO RAN, 2023. Vol. 29, No. 4. P. 217–228. DOI: 10.21538/0134-4889-2023-29-4-217-228 (in Russian)
- Novikov S.I. Periodic interpolation with minimal norm of \(m\)-th derivative. Sib. Zh. Vychisl. Math., 2006. Vol. 9, No. 2. P. 165–172. (in Russian)
- Novikov S.I. On an interpolation problem with the smallest \(L_2\)-norm of the Laplace operator. Proc. Steklov Inst. Math., 2022. Vol. 319, Suppl. 1. P. S193–S203. DOI: 10.1134/S0081543822060177
- Parodi M. La Localisation des Valeurs Caractéristiques des Matrices et ses Applications. Paris: Gauthier Villars, 1959. 172 p. (in French)
- Pevnyi A.B. Natural splines of two and three variables. Metody Vychisl., 1985. No. 14. P. 160–170. (in Russian)
- Rozhenko A.I. Abstraktnaya teoriya splajnov [Abstract Theory of Splines]. Novosibirsk: Publ. Center of Novosibirsk State University, 1999. 177 p. (in Russian)
- Shevaldin V.T. Subbotin’s splines in the problem of extremal interpolation in the space \( L_{p}(\mathbb{R})\) for second-order linear differential operators. Trudy Inst. Mat. i Mekh. UrO RAN, 2021. Vol. 27, No. 4. P. 255–262. DOI: 10.21538/0134-4889-2021-27-4-255-262 (in Russian)
- Shevaldin V.T. Extremal interpolation with the least value of the norm of the second derivative in \(L_{p}(\mathbb{R})\). Izv. Math., 2022. Vol. 86, No. 1. P. 203–219. DOI: 10.1070/IM9125
- Subbotin Yu.N. Functional interpolation in the mean with smallest n derivative. Proc. Steklov Inst. Math., 1967. Vol. 88. P. 31–63.
- Subbotin Yu.N., Novikov S.I., Shevaldin V.T. Extremal function interpolation and splines. Trudy Inst. Mat. i Mekh. UrO RAN, 2018. Vol. 24, No. 3. P. 200–225. DOI: 10.21538/0134-4889-2018-24-3-200-225 (in Russian)
- Tarazaga P. Eigenvalue estimates for symmetric matrices. Linear Algebra Appl., 1990. Vol. 135, No. 1. P. 171–179. DOI: 10.1016/0024-3795(90)90120-2
- Tikhomirov V.M., Bojanov B.D. On some convex problems of approximation theory. Serdica, 1979. Vol. 5. P. 83–96. (in Russian)
- Vladimirov V.S. Uravneniya matematicheskoj fiziki [Equations of Mathematical Physics]. Moscow: Nauka Publ., 1971. 512 p. (in Russian)
Article Metrics
Refbacks
- There are currently no refbacks.