ZAGREB INDICES OF A NEW SUM OF GRAPHS
Abstract
The first and second Zagreb indices, since its inception have been subjected to an extensive research in the physio- chemical analysis of compounds. In [6] Hanyuan Deng et.al computed the first and second Zagreb indices of four new operations on a graph defined by M. Eliasi, B. Taeri in [4]. Motivated from this we define a new operation on graphs and compute the first and second Zagreb indices of the resultant graph. We illustrate the results with some examples.
Keywords
First Zagreb index M1(G), Second Zagreb index M2(G), F∗ sum.
Full Text:
PDFReferences
- Alex L., Indulal G. Some degree based topological indices of a generalised F sums of graphs. Electron. J. Math. Anal. Appl., 2021. Vol. 9, No. 1. P. 91–111.
- Alex L., Indulal G. On the Wiener index of FH sums of graphs. J. Comput. Sci. Appl. Math., 2021. Vol. 3, No. 2. P. 37–57. DOI: 10.37418/jcsam.3.2.1
- Balaban A.T., Motoc I., Bonchev D., Mekenyan O. Topological indices for structure-activity correlations. In: Topics Curr. Chem., vol 114: Steric Effects in Drug Design. Berlin, Heidelberg: Springer, 1983. P. 21–55. DOI: 10.1007/BFb0111212
- Cvetković D.M., Doob M., Sachs H. Spectra of Graphs: Theory and Application. New York: Academic Press, 1980. 368 p.
- Deng H., Sarala D., Ayyaswamy S.K., Balachandran S. The Zagreb indices of four operations on graphs. Appl. Math. Comput., 2016. Vol. 275. P. 422–431. DOI: 10.1016/j.amc.2015.11.058
- Eliasi M., Taeri B. Four new sums of graphs and their Wiener indices. Discrete Appl. Math., 2009. Vol. 157, No. 4. P. 794–803. DOI: 10.1016/j.dam.2008.07.001
- Furtula B., Gutman I. A forgotten topological index. J. Math. Chem., 2015. Vol. 53. P. 1184-1190. DOI: 10.1007/s10910-015-0480-z
- Gutman I. On the origin of two degree-based topological indices. Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur., 2014, Vol. 146. P. 39–52.
- Gutman I., Das K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem., 2004. Vol. 50. P. 83–92.
- Gutman I., Milovanović E., Milovanović I. Beyond the Zagreb indices. AKCE Int. J. Graphs and Combinatorics, 2018. DOI: 10.1016/j.akcej.2018.05.002
- Gutman I., Trinajstić N. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, Vol. 17, No. 4. P. 535–538. DOI: 10.1016/0009-2614(72)85099-1
- Gutman I., Ruščić B., N. Trinajstić, Wilcox C.F. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys., 1975. Vol. 62, No. 9. P. 3399–3405.
- Gutman I. An exceptional property of the first Zagreb index. MATCH Commun. Math. Comput. Chem., 2014. Vol. 72. P. 733–740.
- Imran M., Akhter S., Iqbal Z. Edge Mostar index of chemical structures and nanostructures using graph operations. Int. J. Quantum Chem., 2020. Vol. 120, No. 15. Art. no. e26259. DOI: 10.1002/qua.26259
- Indulal G., Alex L., Gutman I. On graphs preserving PI index upon edge removal. J. Math. Chem., 2021. Vol. 59. P. 1603–1609. DOI: 10.1007/s10910-021-01255-1
- Khalifeh M.H., Yousefi-Azari H., Ashrafi A.R. The first and second Zagreb indices of some graph operations. Discrete Appl. Math., 2009. Vol. 157. P. 804–811. DOI: 10.1016/j.dam.2008.06.015
- Li X., Zhao H. Trees with the first three smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem., 2004. Vol. 50. P. 57–62.
- Li X., Zheng J. A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem., 2005. Vol. 54, P. 195–208.
- Nikolić S., Kovačević G., Miličević A., Trinajstić N. The Zagreb indices 30 years after. Croat. Chem. Acta., 2003. Vol. 76, No. 2. P. 113–124.
- Stevanović D. Mathematical Properties of Zagreb Indices. Beograd: Akademska misao, 2014. (in Serbian)
- Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947. Vol. 69. P. 17–20. DOI: 10.1021/ja01193a005
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.