ZAGREB INDICES OF A NEW SUM OF GRAPHS
Abstract
The first and second Zagreb indices, since its inception have been subjected to an extensive research in the physio- chemical analysis of compounds. In [6] Hanyuan Deng et.al computed the first and second Zagreb indices of four new operations on a graph defined by M. Eliasi, B. Taeri in [4]. Motivated from this we define a new operation on graphs and compute the first and second Zagreb indices of the resultant graph. We illustrate the results with some examples.
Keywords
First Zagreb index \(M_1(G)\), Second Zagreb index \(M_2(G)\), \(F^*\) sum.
Full Text:
PDFReferences
- Alex L., Indulal G. Some degree based topological indices of a generalised \(F\) sums of graphs. Electron. J. Math. Anal. Appl., 2021. Vol. 9, No. 1. P. 91–111.
- Alex L., Indulal G. On the Wiener index of \(F_H\) sums of graphs. J. Comput. Sci. Appl. Math., 2021. Vol. 3, No. 2. P. 37–57. DOI: 10.37418/jcsam.3.2.1
- Balaban A.T., Motoc I., Bonchev D., Mekenyan O. Topological indices for structure-activity correlations. In: Topics Curr. Chem., vol 114: Steric Effects in Drug Design. Berlin, Heidelberg: Springer, 1983. P. 21–55. DOI: 10.1007/BFb0111212
- Cvetković D.M., Doob M., Sachs H. Spectra of Graphs: Theory and Application. New York: Academic Press, 1980. 368 p.
- Deng H., Sarala D., Ayyaswamy S.K., Balachandran S. The Zagreb indices of four operations on graphs. Appl. Math. Comput., 2016. Vol. 275. P. 422–431. DOI: 10.1016/j.amc.2015.11.058
- Eliasi M., Taeri B. Four new sums of graphs and their Wiener indices. Discrete Appl. Math., 2009. Vol. 157, No. 4. P. 794–803. DOI: 10.1016/j.dam.2008.07.001
- Furtula B., Gutman I. A forgotten topological index. J. Math. Chem., 2015. Vol. 53. P. 1184-1190. DOI: 10.1007/s10910-015-0480-z
- Gutman I. On the origin of two degree-based topological indices. Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur., 2014, Vol. 146. P. 39–52.
- Gutman I., Das K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem., 2004. Vol. 50. P. 83–92.
- Gutman I., Milovanović E., Milovanović I. Beyond the Zagreb indices. AKCE Int. J. Graphs and Combinatorics, 2018. DOI: 10.1016/j.akcej.2018.05.002
- Gutman I., Trinajstić N. Graph theory and molecular orbitals. Total \(\varphi\)-electron energy of alternant hydrocarbons. Chem. Phys. Lett., 1972, Vol. 17, No. 4. P. 535–538. DOI: 10.1016/0009-2614(72)85099-1
- Gutman I., Ruščić B., N. Trinajstić, Wilcox C.F. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys., 1975. Vol. 62, No. 9. P. 3399–3405.
- Gutman I. An exceptional property of the first Zagreb index. MATCH Commun. Math. Comput. Chem., 2014. Vol. 72. P. 733–740.
- Imran M., Akhter S., Iqbal Z. Edge Mostar index of chemical structures and nanostructures using graph operations. Int. J. Quantum Chem., 2020. Vol. 120, No. 15. Art. no. e26259. DOI: 10.1002/qua.26259
- Indulal G., Alex L., Gutman I. On graphs preserving PI index upon edge removal. J. Math. Chem., 2021. Vol. 59. P. 1603–1609. DOI: 10.1007/s10910-021-01255-1
- Khalifeh M.H., Yousefi-Azari H., Ashrafi A.R. The first and second Zagreb indices of some graph operations. Discrete Appl. Math., 2009. Vol. 157. P. 804–811. DOI: 10.1016/j.dam.2008.06.015
- Li X., Zhao H. Trees with the first three smallest and largest generalized topological indices. MATCH Commun. Math. Comput. Chem., 2004. Vol. 50. P. 57–62.
- Li X., Zheng J. A unified approach to the extremal trees for different indices. MATCH Commun. Math. Comput. Chem., 2005. Vol. 54, P. 195–208.
- Nikolić S., Kovačević G., Miličević A., Trinajstić N. The Zagreb indices 30 years after. Croat. Chem. Acta., 2003. Vol. 76, No. 2. P. 113–124.
- Stevanović D. Mathematical Properties of Zagreb Indices. Beograd: Akademska misao, 2014. (in Serbian)
- Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc., 1947. Vol. 69. P. 17–20. DOI: 10.1021/ja01193a005
Article Metrics
Metrics Loading ...
Refbacks
- There are currently no refbacks.